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We showed that the idea of Schleich and Wheeler (1987, Nature 326, 574) for the semi-
classical approach of the interference in phase space of harmonic oscillator squeezed
states can be extended to that of general time-dependent Hamiltonian system. The
quantum phase properties of squeezed states for the general time-dependent Hamilto-
nian system are investigated by using the quantum distribution function. The weighted
overlaps An and phases θn for the system are evaluated in the semiclassical limit.

KEY WORDS: interference in phase space; quantum distribution function; time-
dependent Hamiltonian system; squeezed state.

1. INTRODUCTION

Schleich and Wheeler devised a technique of evaluating semiclassical overlap
integral in the phase space interference of quantum states (Schleich et al., 1988).
The technique can not only be extended to the spherical phase space parameterized
by the components of angular momentum (Lassig and Milburn, 1993) but can also
be applied to the investigation of various nonclassical properties of quantum states
such as photon distribution of squeezed states (Schleich et al., 1988; Schleich
and Wheeler, 1987a,b), interference in parabolic space (Chaturvedi et al., 1998),
and phase properties of Jaynes–Cumming model (El-Orany et al., 2004). It has
been realized that the interference in phase space of harmonic oscillator gives
rise to various nonclassical effects which are fundamental features of quantum
mechanics. In particular, the photon number probability distribution of squeezed
state exhibits nonclassical oscillations with appropriate choice of the parameters,
which can be well understood in terms of interference in phase space (Schleich
et al., 1988; Schleich and Wheeler, 1987a,b). The calculation of the overlap
between bands of two quantum states is a central problem in quantum mechanics
and gives insight in analyzing quantum probability amplitude. Krähmer et al.
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studied giant oscillations in the photon distribution of a highly squeezed state
rotated relative to the momentum axis (Krähmer et al., 1994). Chaturvedi et al.
showed that the interference in the phase space algorithm can be extended to the
hyperbolic space underlying the group of SU(1,1) Lie algebra which attracted
great interest in many branches of physics (Chaturvedi et al., 1998).

The main goal of the present paper is to investigate quantum phase properties
of squeezed states for the time-dependent Hamiltonian system (TDHS) by finding
the quantum distribution using the method employed in Schleich and Wheeler
(1987a). The system whose Hamiltonian explicitly depends on time has attracted
considerable attention (Bandyopadhyay et al., 2001; Choi, 2004a; Dodonov and
Man’ko, 1978; Kim and Lee, 2000; Nieto and Truax, 2000; Pedrosa and Guedes,
2002; S̆amaj, 2002; Song, 2000; Um et al., 2002; Wei et al., 2002) for several
decades because of its applications to various branches in physics. The dynam-
ical invariant operator method has been widely employed to find exact quantum
states of TDHS after the report of simple relation between the solutions of the
Schrödinger equation and the eigenstates of dynamical invariants for the time-
dependent harmonic oscillator by Lewis and Riesenfeld (1969). One of the typical
types of the TDHS is Caldirola–Kanai oscillator (Kanai, 1948) which gives dissi-
pative classical equation of motion.

This paper is organized as the follows. In Section 2, we study the quantum
description of the TDHS using Lewis-Riesenfeld (LR) invariant operator. In Sec-
tion 3, the squeezed state is investigated by solving the eigenvalue equation of
b̂ = µâ + νâ†, where â is annihilation operator. The interference properties in the
phase space of the squeezed state are described in Sections 4 and 5. We summarize
the results of the paper in the last section.

2. TIME-DEPENDENT HAMILTONIAN SYSTEM

In this section, we study the invariant operator method employed in Choi
(2004a) in order to derive the exact solution of the Schrödinger equation for the
TDHS. The Hamiltonian describing general TDHS is

Ĥ (q̂, p̂, t) = A(t)p̂2 + B(t)(q̂p̂ + p̂q̂) + C(t)q̂2 + D(t)q̂ + E(t)p̂ + F (t),
(1)

where A(t)–F (t) are some time-dependent functions. The introduction of the LR
(Lewis–Riesenfeld) invariant operator (Lewis and Riesenfeld, 1969) may relieve
the mathematical difficulties to evaluate exact quantum states of the system. From
dÎ/dt = 0, the LR invariant operator Î can be represented as (Choi, 2004a)

Î = �2

4ρ2(t)
(q̂ − qp(t))2 +

[
ρ(p̂ − pp(t)) + 1

2A
(2Bρ(t) − ρ̇(t))(q̂ − qp(t))

]2

,

(2)
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where � is real positive constant, ρ(t) is some time-dependent classical solution
of the following differential equation:

ρ̈(t) − Ȧ

A
ρ̇(t) +

(
2
ȦB

A
− 4B2 + 4AC − 2Ḃ

)
ρ(t) − �2A2 1

ρ3(t)
= 0, (3)

and qp(t) and pp(t) are particular solutions of the classical equation of motion
in position and momentum space, respectively. Taking advantage of Hamiltonian
dynamics we can readily show that qp(t) and pp(t) satisfies

q̈p(t) − Ȧ

A
q̇p(t) +

(
2
ȦB

A
− 4B2 + 4AC − 2Ḃ

)
qp(t)

= − ȦE

A
+ 2BE − 2AD + Ė, (4)

p̈p(t) − Ċ

C
ṗp(t) +

(
4AC − 2

ĊB

C
− 4B2 + 2Ḃ

)
pp(t)

= ĊD

C
+ 2BD − 2CE − Ḋ. (5)

In terms of an annihilation operator that defined as

â =
√

1

h�

{[
�

2ρ
+ i

1

2A
(2Bρ − ρ̇)

]
(q̂ − qp) + iρ(p̂ − pp)

}
, (6)

and its conjugate operator â† which is a creation operator, Eq. (2) can be expressed
in a simple form

Î = h�

(
â†â + 1

2

)
. (7)

Note that â and â† satisfy boson commutation relation: [â, â†] = 1. Let’s represent
the eigenvalue equation of Î as

Î |φn(t)〉 = λn|φn(t)〉. (8)

Then, the eigenvalues λn and position eigenstates 〈q|φn(t)〉 are given by (Choi,
2004a):

λn = h�

(
n + 1

2

)
, (9)

〈q|φn(t)〉 = 4

√
�

2ρ2hπ

1√
2nn!

Hn

[√
�

2ρ2h
(q − qp)

]

× exp

{
i

h
ppq − 1

2ρh

[
�

2

1

ρ
+ i

2A
(2Bρ − ρ̇)

]
(q − qp)2

}
. (10)
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The wave functions 〈q|ψn(t)〉 that satisfy the Schrödinger equation are same as the
eigenstates 〈q|φn(t)〉 except for some time-dependent phase factors exp [iεn(t)]
(Lewis and Riesenfeld, 1969):

〈q|ψn(t)〉 = 〈q|φn(t)〉 exp [iεn(t)]. (11)

In the above equation, the phases εn(t) are given by (Choi, 2004a):

εn(t) = −
(

n + 1

2

)∫ t

0

A(t ′)�
ρ2(t ′)

dt ′ − 1

h

∫ t

0

[
Lp(qp(t ′), q̇p(t ′), t ′)

− E2(t ′)
4A(t ′)

+ F (t ′)
]
dt ′, (12)

where

Lp(qp(t ′), q̇p(t ′), t ′) = 1

4A(t ′)
q̇2

p(t ′) − B(t ′)
A(t ′)

qp(t ′)q̇p(t ′)

−
(

C(t ′) − B2(t ′)
A(t ′)

)
q2

p(t ′). (13)

The general solution of the Schrödinger equation may be expanded in terms of the
Fock state wave functions

〈q|ψ(t)〉 =
∞∑

n=0

cn〈q|ψn(t)〉, (14)

where cn are the amplitudes of the nth wave functions that contribute to the wave
packet. Taking advantage of the orthonormality of the 〈q|ψn(t)〉, we see that cn

can be evaluated from

cn =
∫ ∞

−∞
〈ψn(t)|q〉〈q|ψ(t)〉 dq. (15)

The probabilities for finding the energy of the system in nth quantum states are

Pn = |cn|2. (16)

In quantum optics, Pn are often called photon distributions.

3. SQUEEZED STATE

Since the main purpose of this paper is to find the distribution of Eq. (16)
in squeezed state for the general TDHS we derive exact squeezed state in this
section. It is well known that the standard definition of coherent state |α〉 is the
eigenstate of the annihilation operator

â|α〉 = α|α〉. (17)
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On the other hand, the squeezed state |β〉 is the eigenstate of the operator b̂ that
defined by

b̂ = µâ + νâ†, (18)

where complex numbers µ and ν satisfy

|µ|2 − |ν|2 = 1. (19)

To simplify the problem, we only consider for the case that µ and ν are real values.
We can easily check that b̂ satisfies [b̂, b̂†] = 1. The eigenvalue equation for b̂ is

b̂|β〉 = β|β〉. (20)

By multiplying both sides from the left by 〈q|, we easily derive the coordinate
squeezed state

〈q|β〉 = Nq exp

{
− 1

ρh

{[
�

2ρ
s + i

2A
(2Bρ − ρ̇)

](
1

2
q2 − qpq

)
− iρppq

}

+ (s + 1)α + (s − 1)α∗

2ρ

√
�

h
q

}
, (21)

where squeezing parameter s is defined by

s = µ + ν

µ − ν
, (22)

and Nq is the normalization constant given by

Nq =
(

�s

2ρ2hπ

)1/4

exp


− �s

4ρ2h

(
qp + 2ρ

√
h

�
Re α

)2

+ iδs,q


 . (23)

In the expression of Eq. (21), we used

β = µα + να∗. (24)

Since the absolute square of Eq. (21) is Gaussian

|〈q|β〉|2 = |Nq |2 exp

{
− s�

2ρ2h

[
q2 −

(
2qp + 4ρ

√
h

�
Re α

)
q

]}
, (25)

we easily identify the variation of q as


q =
√

ρ2h

�s
. (26)
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Now we multiply both sides of Eq. (20) by 〈p| in order to obtain the p space
squeezed state:

〈p|β〉 = Np exp

{
qp

ih
p − 1

2h

[
�

2ρ
s + i

2A
(2Bρ − ρ̇)

]−1

× [ρ(p2 − 2ppp) + i[(s + 1)α + (s − 1)α∗]
√

h�p
]}

, (27)

where normalization constant Np is

Np =
(

2�

hπ

)1/4 (
s�2

ρ2
+ (2Bρ − ρ̇)2

sA2

)−1/4

× exp

{
− �

h

(
s�2

ρ2
+ (2Bρ − ρ̇)2

sA2

)−1

×
[
pp + 1

ρ

√
h�

(
Im α − ρ

A�
(2Bρ − ρ̇)Re α

)]2

+ iδs,p

}
. (28)

Then, we can see that the absolute square of Eq. (27) is also Gaussian

|〈p|β〉|2 = |Np|2 exp

{
− 2�

h

[
s�2

ρ2
+ 1

sA2
(2Bρ − ρ̇)2

]−1

×
{
p2 − 2

[
pp + 1

ρ

√
h�

(
Im α − ρ

A�
(2Bρ − ρ̇)Re α

)]
p

}}
,

(29)

so that


p =
{

h

4�

[
s�2

ρ2
+ 1

sA2
(2Bρ − ρ̇)2

]}1/2

. (30)

Equations (26) and (30) mean the uncertainty relation is


q 
p = h

2

[
1 + ρ2

s2A2�2
(2Bρ − ρ̇)2

]1/2

. (31)

Note that the above equation is explicitly dependent on parameter s. The depen-
dency of the squeezed state on the squeezing parameter for the TDHS is described
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in Choi (2004b). The simplest phase space distribution of squeezed state is

Ps(q, p, t) = |〈q|β〉|2|〈p|β〉|2

= �

hπρ

(
�2

ρ2
+ (2Bρ − ρ̇)2

s2A2

)−1/2

× exp

{
− �s

2ρ2h

(
q − qp − 2ρ

√
h

�
Re α

)2

−2�

h

(
s�2

ρ2
+ (2Bρ − ρ̇)2

sA2

)−1

×
[
p − pp − 1

ρ

√
h�

(
Im α − ρ

A�
(2Bρ − ρ̇)Re α

)]2
}

. (32)

We will use the above equation in the derivation of semiclassical distribution
function later.

4. QUANTUM DISTRIBUTION IN SQUEEZED STATE

The scalar product between Fock state |ψn〉 and squeezed state |β〉 determine
the area of overlap in phase space. Thus, the probabilities that the system is in its
nth energy eigenstate are

Pn = |〈ψn|β〉|2 =
∣∣∣∣
∫ ∞

−∞
〈ψn|q〉〈q|β〉

∣∣∣∣
2

. (33)

After substituting Eqs. (11) and (21) into the above equation, the integration in the
above equation can be performed with the help of the generating function

e−t2+2xt =
∑

n

Hn(x)

n!
tn. (34)

Thus, we finally arrive at

Pn = 2s1/2

1 + s

1

2nn!

(
s − 1

s + 1

)n

Hn(y)Hn(y∗)

× exp

{
−2s(Re α)2 + 1 + s2

2(1 + s)
(α2 + α∗2) + (s − 1)|α|2

}
, (35)

where

y = 1√
2

(√
s + 1

s − 1
α +

√
s − 1

s + 1
α∗
)

. (36)



190 Choi

In the calculation of Eq. (35), we can see that Eq. (35) is exactly the same as
Eq. (3.3) of Schleich and Wheeler (1987a) by introducing c = (s + 1)/(s − 1).
Schleich and Wheeler (1987a) illustrate that this distribution function suffers
oscillation for highly squeezed state. If α is real, y becomes

y =
√

2αs√
s2 − 1

, (37)

so that

Pn = 2s1/2

1 + s

1

2nn!

(
s − 1

s + 1

)n

[Hn(y)]2 exp

(
− 2s

1 + s
α2

)
. (38)

This is the same as Eq. (6) of Schleich and Wheeler (1987b). We may use the
probability distributions Pn in order to investigate the mean value of the various
quantum functions such as quantum number n and quantum energies En

n̄ =
∑

n

nPn, (39)

Ē =
∑

n

EnPn. (40)

The fluctuation of Ē is


E =


∑

n

E2
nPn −

(∑
n

EnPn

)2



1/2

. (41)

5. SEMICLASSICAL DISTRIBUTION FUNCTION:
INTERFERENCE IN PHASE SPACE

Schleich and Wheeler have shown that the semiclassical approach of the
interference in the squeezed state of standard harmonic oscillator gives a nice
representation of quantum distribution functions in the form (Schleich et al.,
1988; Schleich and Wheeler, 1987a,b)

Pn =
∣∣∣√Ane

iθn +
√

Ane
−iθn

∣∣∣2 , (42)

where An and θn are areas of overlap and phases associated with each overlap.
This approach may give insight into the concepts of interference in phase space
and into the behavior of energy distribution. We showed that this idea can also be
extended to that of general TDHS in Appendix A. Now, we investigate An and θn
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Fig. 1. Plot of the phase space for the Caldirola–Kanai oscillator which is a good
example of the TDHS. We used n = 3, m = 1, ω0 = 1, ω1 = 0.1, γ = 0.3, h = 1,
F0 = 1, ϑ = 0, and t = 2.

for the general TDHS. From Eqs. (2) and (9), we derive the momentum as

p(q) = 1

ρ

[
h�

(
n + 1

2

)
− �2

4ρ2
(q − qp)2

]1/2

− 1

2Aρ
(2Bρ − ρ̇)(q − qp) + pp.

(43)
We show p(q) in Fig. 1 as a solid central line for the Caldirola–Kanai oscillator
that is presented in Appendix B.

In Fig. 1, inner and outer lines correspond to

pn(q) = 1

ρ

[
h�n − �2

4ρ2
(q − qp)2

]1/2

− 1

2Aρ
(2Bρ − ρ̇)(q − qp) + pp, (44)

pn+1(q) = 1

ρ

[
h�(n + 1) − �2

4ρ2
(q − qp)2

]1/2

− 1

2Aρ
(2Bρ − ρ̇)(q − qp) + pp.

(45)

Then the weighted overlap in Fig. 1 is (Krähmer et al., 1994)

An =
∫ ∞

−∞
dq

∫ pn+1(q)

pn(q)
dp Ps(q, p, t)

=
∫ ∞

−∞
|〈q|β〉|2dq

∫ pn+1(q)

pn(q)
|〈p|β〉|2 dp. (46)
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When we recall Eq. (25), the integration over q may be performed by replacing
the position distribution with a δ-function at q = q0, where

q0 = qp + 2ρ

√
h

�
Re α, (47)

in the limit of s � 1. Then, the rest integral is

An =
∫ pn+1(q0)

pn(q0)
|〈p|β〉|2dp. (48)

For s � 1, the exponential factor in Eq. (29) is slowly varying between the
integration intervals

δpn(q0) = [pn+1(q) − pn(q)]q=q0 . (49)

Hence, we approximate Eq. (48) as

An 	 [|〈p|β〉|2]p=p̄n(q0) × δpn(q0), (50)

where p̄n(q0) are the mean values given by

p̄n(q0) = 1

2
[pn(q) + pn+1(q)]q=q0 . (51)

By taking advantage of Eqs. (44), (45), and (47), Eqs. (49) and (51) can be rewritten
as

δpn(q0) =
√

h�

ρ
[(n + 1 − Re α)1/2 − (n − Re α)1/2], (52)

p̄n(q0) =
√

h�

2ρ
[(n − Re α)1/2 + (n + 1 − Re α)1/2]

− 2Bρ − ρ̇

A

√
h

�
Re α + pp. (53)

By substitution of the above two equations into Eq. (50) we obtain

An =
√

2

π

(
s + ρ2

sA2�2
(2Bρ − ρ̇)2

)−1/2

[(n − Re α)1/2 + (n + 1 − Re α)1/2]−1

× exp

{
− 1

2

(
s + ρ2(2Bρ − ρ̇)2

sA2�2

)−1

×{[(n − Re α)1/2 + (n + 1 − Re α)1/2] − 2 Im α}2

}
. (54)

Note that this is the same as Eq. (70) in Appendix A.
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Now we calculate the phases θn associated with the shaded area in Fig. 1
(Krähmer et al., 1994).

θn = 1

h

∫ q1

q0

pn(q) dq − π

4
. (55)

Since momentum banishes (p = 0) at the turning point of oscillator we obtain
second order equation with respect to q − qp from Eqs. (2) and (9):(

�2

4ρ2
+ 1

4A2
(2Bρ − ρ̇)2

)
(q − qp)2 − ρpp

A
(2Bρ − ρ̇)(q − qp)

+ ρ2p2
p − h�

(
n + 1

2

)
= 0. (56)

By solving the above equation we derive the upper bound of coordinate in the
integration regime of Eq. (55) as

q1 =
(

�2

2ρ2
+ 1

2A2
(2Bρ − ρ̇)2

)−1
{

ρpp

A
(2Bρ − ρ̇)

+�

[(
h�

ρ2
+ h

A2�
(2Bρ − ρ̇)2

)(
n + 1

2

)
− p2

p

]1/2
}

+ qp. (57)

Then the performance of integration in Eq. (55) gives

θn = �

4ρ2h

{
(q1 − qp)

√
4nhρ2

�
− (q1 − qp) − (q0 − qp)

√
4nhρ2

�
− (q0 − qp)

+ 4nhρ2

�

[
sin−1

(
(q1 − qp)

/√
4nhρ2

�

)

− sin−1

(
(q0 − qp)

/√
4nhρ2

�

)]}
− 2Bρ − ρ̇

4Ahρ2
[(q1 − qp)2

− (q0 − qp)2] + pp

h
(q1 − q0) − π

4
. (58)

Thus, we derived semiclassical distribution functions, Eq. (42), by finding An and
θn in Eqs. (54) and (58).

6. SUMMARY

In this paper, we derived the quantum probability distributions Pn of the
squeezed state for the general TDHS by taking advantage of the LR invariant
operator. The introduction of the LR invariant operator relieves the mathematical
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difficulties to evaluate quantum states of the system. We evaluated Pn in two
ways in the squeezed state. Equation (35) is obtained from the exact quantum
theory. On the other hand, Eq. (42) with Eqs. (54) and (58) is derived from
semiclassical approach of the interference. The semiclassical approach gives deep
insight into the concept of interference in phase space and into the behavior of
energy distribution. We can use Pn in order to investigate the mean value of the
various quantum functions such as quantum number n and quantum energies En.
The squeezed state which is the eigenstate of the operator b̂ defined in Eq. (18) is
derived in both q and p space. Since the absolute square of the squeezed state is
Gaussian we easily identified the variation of q and p as Eqs. (26) and (30). The
uncertainty relation in squeezed state given by Eq. (31) is always larger than h/2
so that the uncertainty principle hold.

The area of overlap in the phase space may be determined by the scalar
product between Fock state |ψn〉 and squeezed state |β〉. The idea (Schleich
et al., 1988; Schleich and Wheeler, 1987a,b) of Schleich and Wheeler that the
semiclassical approach of the interference in phase space of harmonic oscillator
squeezed state is expressed as Eq. (42) gives a nice representation of quantum
distribution functions. We showed that this idea can be extended to general TDHS
in Appendix A. The weighted overlaps An and phases θn are evaluated in Eqs. (54)
and (58) in the semiclassical limit, which are main results of this paper. From
Fig. 2, we see that the probability that the highly squeezed TDHS is in its nth
energy eigenstates oscillate. This agrees well with the reports (Schleich et al.,

Fig. 2. Quantum distribution function Pn in a highly squeezed state of Caldirola–
Kanai oscillator for α = e−iωd t , s = 150, γ = 0.4, h = 1, � = 1, m = 1, F0 = 1,
ω0 = 1, ω1 = 0.5, ϑ = 0, and t = 2. We used Eq. (42) with Eqs. (99) and (100) for
solid line, and used Eq. (35) for dashed line.
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1988; Schleich and Wheeler, 1987a,b) of Schleich and Wheeler for the simple
harmonic oscillator.

APPENDIX A

In this appendix, we show that the concept of Eq. (42) can be extended to the
general TDHS using semiclassical approach. The Wigner distribution of TDHS is
given by (Choi, 2005)

Wn(q, p, t) = (−1)n

π h
e−2I (q,p,t)/( h�)Ln

(
4

h�
I (q, p, t)

)
, (59)

where I (q, p, t) is a classical invariant quantity:

I (q, p, t) = �2

4ρ2(t)
(q − qp(t))2

+
[
ρ(p − pp(t)) + 1

2A
(2Bρ(t) − ρ̇(t))(q − qp(t))

]2

. (60)

The outermost wave front of Wigner distribution functions Wn are always crest and
the followed inner waves form troughs and crests alternatively. The probabilities
Pn are given by the overlap in phase space between Wn and distribution Ps in
Eq. (32). The product WnPs forms not only two diamond-shaped patches by the
overlap between outermost wave crest and Ps , but also create ditches and tongues
by the overlap between inner waves and Ps (Schleich et al., 1988). Therefore,
the probabilities Pn consist of two parts, i.e., “diamond” probabilities P diam

n and
“ditch” probabilities P ditch

n

P diam
n = 2πh

∫ ∞

−∞
dq

∫ ∞

p̄n

dp Wn(q, p, t)Ps(q, p, t), (61)

P ditch
n = 2πh

∫ ∞

−∞
dq

∫ p̄n

−p̄n

dpWn(q, p, t)Ps(q, p, t). (62)

First, we evaluate the diamond probabilities. The substitution of Eqs. (32) and
(59) into Eq. (61) leads to

P diam
n = 2(−1)n�

hπρ

(
�2

ρ2
+ (2Bρ − ρ̇)2

s2A2

)−1/2

×
∫ ∞

−∞
dq

∫ ∞

p̄n

dpe−2I (q,p,t)/( h�)Ln

(
4

h�
I (q, p, t)

)

× exp

[
− �s

2ρ2h

(
q − qp − 2ρ

√
h

�
Re α

)2 ]
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× exp

{
− 2�

h

(
s�2

ρ2
+ (2Bρ − ρ̇)2

sA2

)−1

×
[
p − pp − 1

ρ

√
h�

(
Im α − ρ

A�
(2Bρ − ρ̇)Re α

)]2
}

. (63)

We approximate the two peaks in the diamond-shaped region as a δ-function in
the coordinate space:

exp


− �s

2ρ2 h

(
q − qp − 2ρ

√
h

�
Re α

)2



	
(

2ρ2 hπ

�s

)1/2

δ

(
q − qp − 2ρ

√
h

�
Re α

)
. (64)

Then, we can easily integrate Eq. (63) with respect to q. Now we introduce the
following variable:

η = 4 Re α + 4

h�

[
ρ(p − pp(t)) + ρ

A
(2Bρ(t) − ρ̇(t))

√
h

�
Re α

]2

, (65)

in order to integrate with respect to p, and thus

P diam
n = (−1)n�

ρ
√

2sπ

(
�2

ρ2
+ (2Bρ − ρ̇)2

s2A2

)−1/2

× exp

{
− 2�

h

(
s�2

ρ2
+ (2Bρ − ρ̇)2

sA2

)−1

×
[√

h�

2ρ
[(n − Re α)1/2 + (n + 1 − Re α)1/2] − 1

ρ

√
h� Im α

]2 }

×
∫ ∞

η̄n

dη
1√

η − 4Re α
e−η/2Ln(η), (66)

where

η̄n = 4 Re α + 4

h�

[
ρ(p̄n − pp(t)) + ρ

A
(2Bρ(t) − ρ̇(t))

√
h

�
Re α

]2

= 4 Re α + [(n − Re α)1/2 + (n + 1 − Re α)1/2]2. (67)
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Since η̄n − 4 Re α varies slowly at the turning point η = η̄n the square root of it
in Eq. (66) may be out of the integral with no wonder∫ ∞

η̄n

dη
1√

η − 4Re α
e−η/2Ln(η) 	 1√

η̄n − 4Re α

∫ ∞

η̄n

dηe−η/2Ln(η). (68)

The asymptotic solution of the remnant integral is known in the limit n → ∞
(Schleich et al., 1988) ∫ ∞

η̄n

dη e−η/2Ln(η) 	 2(−1)n. (69)

Thus, we arrive at

P diam
n =

√
2

π

(
s + ρ2

sA2�2
(2Bρ − ρ̇)2

)−1/2

× [(n − Re α)1/2 + (n + 1 − Re α)1/2]−1

× exp

{
− 1

2

(
s + ρ2(2Bρ − ρ̇)2

sA2�2

)−1

×
{

[(n − Re α)1/2 + (n + 1 − Re α)1/2] − 2 Im α

}2
}

≡ An. (70)

This is the same as the weighted area of each zone of the two diamond-shaped
patches.

Now, we calculate the ditch integral. The ditch probabilities can be obtained
by subtracting the probabilities related to two diamond-shaped zones from total
probabilities associated with nth number states.

P ditch
n = 2πh

∫ ∞

−∞
dq

(∫ ∞

−∞
dp − 2

∫ ∞

p̄n

dp

)
Wn(q, p, t)Ps(q, p, t). (71)

The total probabilities may be represented as

Pn = 2πh

∫ ∞

−∞
dq

∫ ∞

−∞
dpWn(q, p, t)Ps(q, p, t)

= 2πh
�

2πρ

(
�2

ρ2
+ (2Bρ − ρ̇)2

s2A2

)−1/2 ∫ ∞

−∞
dq

∫ ∞

−∞
dp Wn(q, p, t)

× exp


− �s

2ρ2h

(
q − qp − 2ρ

√
h

�
Re α

)2



× exp[−A1(p − pp − A2)2], (72)
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where

A1 = 2�

h

(
s�2

ρ2
+ (2Bρ − ρ̇)2

sA2

)−1

, (73)

A2 = 1

ρ

√
h�

(
Im α − ρ

A�
(2Bρ − ρ̇) Re α

)
. (74)

To integrate over p we neglect the little decrease of Ps(q, p, t) with increasing p

along constant q

exp[−A1(p − pp − A2)2] 	 1. (75)

Then, the rest integral over p is just (Choi, 2005; Schleich et al., 1988; Zurek,
1991) ∫ ∞

−∞
dp Wn(q, p, t) = |〈q|ψn(t)〉|2. (76)

Here, 〈q|ψn(t)〉 are the coordinate wave functions given by Eq. (11). However,
in order to investigate phase properties of the system, it is very useful to replace
exact 〈q|ψn(t)〉 with the corresponding WKB wave functions that given by (Choi,
2004c; Schleich et al., 1988)

〈q|ψn(t)〉 	
√

2�

πhρ2

1

(p̄′
n)1/2

cos θn(q), (77)

where

p̄′
n = p̄n − pp − A2, (78)

θn(q) = 1

h

∫ q1

q0

pn(q) dq − π

4
. (79)

Then, a little algebra after performing integration over p leads to

Pn = �

πρ2

(
1 + ρ2(2Bρ − ρ̇)2

s2A2�2

)−1/2
1

p̄′
n

∫ ∞

−∞
dq{1 + cos[2θn(q)]}

× exp

[
− �s

2ρ2h

(
q − qp − 2ρ

√
h

�
Re α

)2 ]
	 2P diam

n + P ditch
n . (80)

Note that the term containing second integral is ditch probability density (Schleich
et al., 1988) so that

P ditch
n = �

πρ2

(
1 + ρ2(2Bρ − ρ̇)2

s2A2�2

)−1/2
1

p̄′
n

∫ ∞

−∞
dq cos[2θn(q)]
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× exp

[
− �s

2ρ2h

(
q − qp − 2ρ

√
h

�
Re α

)2 ]
. (81)

With the help of the integral formula (Schleich et al., 1988)∫ ∞

−∞
dqf (q)e−a(q−b)2 =

√
π

a

∞∑
j=0

1

j !(4a)j
d2j f (q)

dq2j

∣∣∣∣∣
q=b

, (82)

the integral in Eq. (81) becomes

I ditch ≡
∫ ∞

−∞
dq cos[2θn(q)] exp

[
− �s

2ρ2h

(
q − qp − 2ρ

√
h

�
Re α

)2 ]

=
√

2πρ2h

�s

∞∑
j=0

1

j !

(
ρ2h

2�s

)j
d2j cos[2θn(q)]

dq2j

∣∣∣∣∣
q=qp+2ρ

√
h
�

Re α

. (83)

If we ignore the slow variation of p̄′
n(q), the differentiation in the above equation

becomes
d2j cos[2θn(q)]

dq2j
	 (−4)j

(
p̄′

n(q)

h

)2j

cos[2θn(q)], (84)

so that

I ditch =
√

2πρ2h

�s
exp

[
−2ρ2h

�s

(
p̄′

n(q0)

h

)2
]

cos[2θn(q0)]. (85)

Making use of Eq. (85), Eq. (81) can be represented as

P ditch
n ≈ 2

√
2

π

(
s + ρ2

sA2�2
(2Bρ − ρ̇)2

)−1/2

×[(n − Re α)1/2 + (n + 1 − Re α)1/2]−1

× exp

{
− 1

2

(
s + ρ2(2Bρ − ρ̇)2

sA2�2

)−1

×{[(n − Re α)1/2 + (n + 1 − Re α)1/2]

− 2 Im α}2

}
cos[2θn(q0)] = 2An cos[2θn(q0)]. (86)

Recalling second relation in Eq. (80) with Eqs. (70) and (86), we have

Pn = 2An[1 + cos(2θn)]

= ∣∣√Ane
iθn +

√
Ane

−iθn
∣∣2.

Thus, we obtained the probabilities in Eq. (42).
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APPENDIX B

In this appendix, we apply our development to the Caldirola–Kanai oscillator
(Kanai, 1948). With the choice of

A(t) = e−γ t 1

2m
, (87)

C(t) = eγ t 1

2
mω2

0, (88)

D(t) = −eγ tF0 cos(ω1t + ϑ), (89)

where m is the mass, γ is the damping constant, ω0 and ω1 are some constant
frequencies, and F0 and ϑ are the amplitude and the initial phase of the driving
force, and B(t), E(t), and F (t) are zero, Eq. (1) becomes

Ĥ = e−γ t p̂2

2m
+ eγ t 1

2
mω2

0q̂
2 − eγ tF0 cos(ω1t + ϑ)q̂. (90)

Then, the solutions of Eqs. (3)–(5) are (Choi, 2004a; Pedrosa et al., 1997)

ρ(t) =
√

�

2mωd

e−γ t/2, (91)

qp(t) = F0/m√(
ω2

0 − ω2
1

)2 + γ 2ω2
1

cos(ω1t + ϑ − δ), (92)

pp(t) = − F0ω1√(
ω2

0 − ω2
1

)2 + γ 2ω2
1

eγ t sin(ω1t + ϑ − δ), (93)

where modified frequency ωd and phase δ are given by

ωd =
√

ω2
0 − γ 2

4
, (94)

δ = tan−1 γω1

ω2
0 − ω2

1

. (95)

In this case Eqs. (43)–(45) become

p(q) =
√

2mωde
γ t/2

[
h

(
n + 1

2

)
− mωd

2
eγ t (q − qp)2

]1/2

− γm

2
eγ t (q − qp) + pp, (96)
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pn(q) =
√

2mωde
γ t/2

[
hn − mωd

2
eγ t (q − qp)2

]1/2

− γm

2
eγ t (q − qp) + pp, (97)

pn+1(q) =
√

2mωde
γ t/2

[
h(n + 1) − mωd

2
eγ t (q − qp)2

]1/2

− γm

2
eγ t (q − qp) + pp. (98)

Eventually, for the Caldirola–Kanai oscillator, Eqs. (54) and (58) reduce to

An =
√

2

π

(
s + γ 2

4ω2
ds

)−1/2

[(n − Re α)1/2 + (n + 1 − Re α)1/2]−1

× exp

{
− 1

2

(
s + γ 2

4ω2
ds

)−1

{[(n − Re α)1/2

+ (n + 1 − Re α)1/2] − 2 Im α}2

}
, (99)

θn = mωd

2h
eγ t

{
(q1 − qp)

√
2nh

mωdeγ t
− (q1 − qp)

− (q0 − qp)

√
2nh

mωdeγ t
− (q0 − qp)

+ 2nh

mωd

e−γ t

[
sin−1

(
(q1 − qp)

√
mωd

2nh
eγ t

)

− sin−1

(
(q0 − qp)

√
mωd

2n h
eγ t

)]}
− mγ

4 h

√
2mωd

�
e3γ t/2[(q1 − qp)2

− (q0 − qp)2] + pp

h
(q1 − q0) − π

4
, (100)

with

q0 =
√

2h

mωd

e−γ t/2 Re α + qp, (101)

q1 = ωde
−γ t

mω2
0

{
γ

2ωd

pp +
[

2mh

ωd

eγ tω2
0

(
n + 1

2

)
− p2

p

]1/2
}

+ qp. (102)
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We represented Pn for the Caldirola–Kanai oscillator by use of Eqs. (99) and (100)
in Fig. 2.
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